“This discovery speaks to a central challenge in antibiotic development,” says Jon Stokes, senior author of a new paper on the work, assistant professor of biochemistry and biomedical sciences at McMaster, and research affiliate at MIT’s Abdul Latif Jameel Clinic for Machine Learning in Health. “The problem isn’t finding molecules that kill bacteria in a dish — we’ve been able to do that for a long time. A major hurdle is figuring out what those molecules actually do inside bacteria. Without that detailed understanding, you can’t develop these early-stage antibiotics into safe and effective therapies for patients.” Learn more
Every year, global health experts are faced with a high-stakes decision: Which influenza strains should go into the next seasonal vaccine? The choice must be made months in advance, long before flu season even begins, and it can often feel like a race against the clock. If the selected strains match those that circulate, the vaccine will likely be highly effective. But if the prediction is off, protection can drop significantly, leading to (potentially preventable) illness and strain on health care systems. Learn more
Regina Barzilay is in the business of patient future-telling. That is, using machine learning AI models to predict disease—including when and how it will strike, along with how it may behave. Barzilay began pursuing this after being diagnosed with breast cancer in 2014. As a patient, she experienced the frustrating uncertainty surrounding individual prognoses. Her questions about treatments were often answered in reference to what happened to the participants of clinical trials, but she felt those answers gave her little information about her individual situation.
As an AI researcher, she knew how to address that uncertainty. “To me it was quite clear,” she says, “That's what machine learning is about.” A decade later, the AI model she and her team built, named MIRAI, is able to detect a patient’s risk of developing breast cancer within five years. By 2025, MIRAI was validated by over 2 million mammograms in 48 hospitals across 22 countries.
And her future-telling continues. In 2024, Barzilay worked on an AI model that estimates the expected effectiveness of candidate flu vaccines by predicting which versions of the flu virus are likely to spread next season. She’s now working on using the same concept on cancer, in order to predict how patients—particularly with advanced cancers—will react to a specific treatment. “We are constantly running behind the disease,” she says. “The idea here is to be able to predict it.” Learn more
What challenges does health care still face when implementing AI?
The excitement of ambient scribes and AI chatbots has started to wear off, and health care is running out of quick wins as it looks to construct this "new world."
While AI promises efficiency, health systems will have to put in significant time to unlock its full benefits.
Beyond note-taking tools, there are "very little success stories" of clinically implemented AI, said Dr. Regina Barzilay, distinguished professor of AI & Health in the Department of Computer Science at MIT's School of Electrical Engineering and Computer Science and the AI Faculty Lead at MIT's Jameel Clinic.
She told Newsweek that there are abundant stories of new AI algorithms that show promising results but few that have actually proven themselves beyond mere promise. Learn more
When Regina Barzilay was diagnosed with breast cancer in 2014, it upended her life and shifted the direction of her research. Already an accomplished computer scientist specializing in natural language processing, her experience as a patient shed light on the possibility of new applications for machine learning and revealed a stark disconnect between technology’s promise and its implementation in health care. “It was upsetting to see that all these great technologies are not translated into patient care,” she recalls. “I wanted to change it.” After going through her own treatment, Barzilay’s work took on an urgent new focus: could the very technologies she used in her research predict who might be at risk for breast cancer? Learn more
Researchers from the Massachusetts Institute of Technology (MIT) Jameel Clinic for Machine Learning in Health have announced the open-source release of Boltz-2, which now predicts molecular binding affinity at newfound speed and accuracy to democratize commercial drug discovery. The model is available under the highly permissive MIT license, which allows commercial drug developers to use the model internally and apply their own proprietary data. Learn more
The 2024 Nobel Prize in Chemistry was awarded in part to Deepmind’s Demis Hassabis and John Jumper for the development of AlphaFold–an AI model that predicts the structure of proteins, the complex chemicals essential to making our bodies work. Since its inception, this model and others like it have been put to use in laboratories around the world, enabling new biological discoveries.
Now a team from MIT and pharmaceutical company Recursion, with support from Cancer Grand Challenges, have developed a tool that takes these principles further–and may help researchers find new medicines more quickly. Called Boltz-2, this open-source generative AI model can not only predict the structure of proteins, it can also predict its binding affinity–that is, how well a potential drug is able to interact with that protein. This is crucial in the early stages of developing a new medicine. Learn more