Skip to Content

Focus Area: Mirai

Multi-Institutional Validation of a Mammography-Based Breast Cancer Risk Model

Accurate risk assessment is essential for the success of population screening programs in breast cancer. Models with high sensitivity and specificity would enable programs to target more elaborate screening efforts to high-risk populations, while minimizing overtreatment for the rest. Artificial intelligence (AI)-based risk models have demonstrated a significant advance over risk models used today in clinical practice. However, the responsible deployment of novel AI requires careful validation across diverse populations. To this end, we validate our AI-based model, Mirai, across globally diverse screening populations.

Contributors: Fredrik Strand, Gigin Lin, Siddharth Satuluru, Thomas Kim, Imon Banerjee, Judy Gichoya, Hari Trivedi, Constance D. Lehman, Kevin Hughes, David J. Sheedy, Lisa M. Matthis, Bipin Karunakara, Karen E. Hegarty, Silvia Sabino, Thiago B. Silva, Maria C. Evangelista, Renato F. Caron, Bruno Souza, Edmundo C. Mauad, Tal Patalon, Sharon Handelman-Gotlib, Michal Guindy Learn more

Toward robust mammography-based models for breast cancer risk

Improved breast cancer risk models enable targeted screening strategies that achieve earlier detection and less screening harm than existing guidelines. To bring deep learning risk models to clinical practice, we need to further refine their accuracy, validate them across diverse populations, and demonstrate their potential to improve clinical workflows. We developed Mirai, a mammography-based deep learning model designed to predict risk at multiple timepoints, leverage potentially missing risk factor information, and produce predictions that are consistent across mammography machines. Mirai was trained on a large dataset from Massachusetts General Hospital (MGH) in the United States and tested on held-out test sets from MGH, Karolinska University Hospital in Sweden, and Chang Gung Memorial Hospital (CGMH) in Taiwan, obtaining C-indices of 0.76 (95% confidence interval, 0.74 to 0.80), 0.81 (0.79 to 0.82), and 0.79 (0.79 to 0.83), respectively. Mirai obtained significantly higher 5-year ROC AUCs than the Tyrer-Cuzick model (P < 0.001) and prior deep learning models Hybrid DL (P < 0.001) and Image-Only DL (P < 0.001), trained on the same dataset. Mirai more accurately identified high-risk patients than prior methods across all datasets. On the MGH test set, 41.5% (34.4 to 48.5) of patients who would develop cancer within 5 years were identified as high risk, compared with 36.1% (29.1 to 42.9) by Hybrid DL (P = 0.02) and 22.9% (15.9 to 29.6) by the Tyrer-Cuzick model (P < 0.001). Learn more

A Deep Learning Mammography-based Model for Improved Breast Cancer Risk Prediction

Background Mammographic density improves the accuracy of breast cancer risk models. However, the use of breast density is limited by subjective assessment, variation across radiologists, and restricted data. A mammography-based deep learning (DL) model may provide more accurate risk prediction.

Purpose To develop a mammography-based DL breast cancer risk model that is more accurate than established clinical breast cancer risk models.

Materials and Methods This retrospective study included 88 994 consecutive screening mammograms in 39 571 women between January 1, 2009, and December 31, 2012. For each patient, all examinations were assigned to either training, validation, or test sets, resulting in 71 689, 8554, and 8751 examinations, respectively. Cancer outcomes were obtained through linkage to a regional tumor registry. By using risk factor information from patient questionnaires and electronic medical records review, three models were developed to assess breast cancer risk within 5 years: a risk-factor-based logistic regression model (RF-LR) that used traditional risk factors, a DL model (image-only DL) that used mammograms alone, and a hybrid DL model that used both traditional risk factors and mammograms. Comparisons were made to an established breast cancer risk model that included breast density (Tyrer-Cuzick model, version 8 [TC]). Model performance was compared by using areas under the receiver operating characteristic curve (AUCs) with DeLong test (P < .05).

Results The test set included 3937 women, aged 56.20 years ± 10.04. Hybrid DL and image-only DL showed AUCs of 0.70 (95% confidence interval [CI]: 0.66, 0.75) and 0.68 (95% CI: 0.64, 0.73), respectively. RF-LR and TC showed AUCs of 0.67 (95% CI: 0.62, 0.72) and 0.62 (95% CI: 0.57, 0.66), respectively. Hybrid DL showed a significantly higher AUC (0.70) than TC (0.62; P < .001) and RF-LR (0.67; P = .01).

Conclusion Deep learning models that use full-field mammograms yield substantially improved risk discrimination compared with the Tyrer-Cuzick (version 8) model.

Contributors: Constance Lehman, Tal Schuster, Tally Portnoi Learn more
image description